Abstract
A sensitive and specific method for the determination of 17α-hydroxyprogesterone caproate (17-OHPC) in human plasma using high-performance liquid chromatography and mass spectrometry has been developed and validated. Plasma samples were processed by a solid phase extraction (SPE) procedure using Oasis HLB extraction cartridge prior to chromatography. Medroxyprogesterone acetate (MPA) was used as the internal standard. Chromatography was performed using Waters C18 Symmetry analytical column, 3.5 μm, 2.1 mm × 10 mm, using a gradient elusion with a mobile phase consisting of acetonitrile [A] and 5% acetonitrile in water [B], with 0.1% formic acid being added to both [A] and [B], at a flow rate 0.2 ml/min. The retention times of 17-OHPC and MPA were 8.1 and 5.0 min, respectively, with a total run time of 15 min. Analysis was performed on Thermo Electron Finnigan TSQ Quantum Ultra mass spectrometer in a selected reaction-monitoring (SRM), positive mode using electron spray ionization (ESI) as an interface. Positive ions were measured using extracted ion chromatogram mode. The extracted ions following SRM transitions monitored were m/ z 429.2 → 313.13 and 429.2 → 271.1, for 17-OHPC and m/ z 385.1 → 276 for MPA. The extraction recoveries at concentrations of 5, 10 and 50 ng/ml were 97.1, 92.6 and 88.7%, respectively. The assay was linear over the range 0.5–50 ng/ml for 17-OHPC. The analysis of standard samples for 17-OHPC 0.5, 1, 2.5, 5, 10, 25 and 50 ng/ml demonstrated a relative standard deviation of 16.7, 12.4, 13.7, 1.4, 5.2, 3.7 and 5.3%, respectively ( n = 6). This method is simple, adaptable to routine application, and allows easy and accurate measurement of 17-OHPC in human plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.