Abstract

There is a great need for effective protection against cutaneous pathologies arising from chronic exposure to harmful solar UVB radiations. A promising pharmaceutical strategy to improve the efficacy of chemotherapeutic/preventative natural compounds (e.g., soy isoflavone Genistein, Gen) is to enhance their dermal delivery using nanoemulsion (NE) formulations. This report investigates the development of nanoemulsified tocotrienol(T3)-rich fraction of red palm oil (Tocomin®), to yield an optimal NE delivery system for dermal photoprotection (z-average size <150 nm, ζ-potential ≈ -30 mV, polydispersity index < 0.25). Physicochemical characterization and photostability studies indicate NE formulations utilizing surfactant mixture (Smix) of Solutol® HS-15 (SHS15) blended with vitamin E TPGS (TPGS) as cosurfactant was significantly superior to formulations that utilized Lutrol® F68 (LF68) as the cosurfactant. A ratio of 60:40 of SHS15-TPGS-NE was further identified as lead Tocomin® NE topical platform using in vitro pharmaceutical skin reactivity studies that assess cutaneous irritancy and cytotoxicity. Prototype Tocomin® NE loaded with the antiphotocarcinogenic molecule Gen (Gen-Tocomin® NE) showed slow-release profile in both liquid and cream forms. Gen-Tocomin® NE also showed excellent biocompatibility, and provided substantial UVB protection to cultured subcutaneous L929 fibroblasts, indicating the great potential of our Tocomin® NE warranting further prototype development as topical pharmaceutical platform for skin photoprotection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.