Abstract

This work aims to develop an exoskeleton structure that complies with a set of military requirements in line with the current operational environment demands. A design process was implemented so that these requirements could be identified and embedded in the development of a functional prototype suited for laboratory trials. The prototype was manufactured using 3D scanning and additive manufacturing technologies, and a functional evaluation of the developed solution was performed by 30 subjects to assess its suitability for military applications. Results show that the developed design is suitable for military activities, incorporating requirements addressing ergonomics, range of motion and comfort. Also, additive manufacturing is suitable for developing tailor-made exoskeleton structures, allowing for the prompt production of affordable personalized parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.