Abstract

ABSTRACTPurpose: To validate and compare a novel model based on the critical power (CP) concept that describes the entire domain of maximal mean power (MMP) data from cyclists.Methods: An omni-domain power-duration (OmPD) model was derived whereby the rate of Wʹ expenditure is bound by maximum sprint power and the power at prolonged durations declines from CP log-linearly. The three-parameter CP (3CP) and exponential (Exp) models were likewise extended with the log-linear decay function (Om3CP and OmExp). Each model bounds Wʹ using a different nonconstant function, Wʹeff (effective Wʹ). Models were fit to MMP data from nine cyclists who also completed four time-trials (TTs).Results: The OmPD and Om3CP residuals (4 ± 1%) were smaller than the OmExp residuals (6 ± 2%; P < 0.001). Wʹeff predicted by the OmPD model was stable between 120–1,800 s, whereas it varied for the Om3CP and OmExp models. TT prediction errors were not different between models (7 ± 5%, 8 ± 5%, 7 ± 6%; P = 0.914).Conclusion: The OmPD offers similar or superior goodness-of-fit and better theoretical properties compared to the other models, such that it best extends the CP concept to short-sprint and prolonged-endurance performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.