Abstract

The gravity of threats posed by microplastic pollution to the environment cannot be overestimated. Being ubiquitous in the living environment, microplastics reach humans through the food chain causing various hazardous effects. Microplastics can be effectively degraded by PETase enzymes. The current study reports, for the first time, a hydrogel-encapsulated, bioinspired colonic delivery of PETase. A free radical polymerization-assisted hydrogel system was synthesized from sericin, chitosan, and acrylic acid using N,N′-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The hydrogel was characterized with FTIR, PXRD, SEM, and thermal analysis to confirm the development of a stabilized hydrogel system. The hydrogel showed 61 % encapsulation efficiency, maximum swelling, and cumulative PETase release (96 %) at pH 7.4. The mechanism of PETase release exhibited the Higuchi pattern of release with an anomalous transport mechanism. SDS-PAGE analysis confirmed the preservation of the post-release structural integrity of PETase. The released PETase exhibited concentration- and time-dependent degradation of polyethylene terephthalate in vitro. The developed hydrogel system exhibited the intended features of a stimulus-sensitive carrier system that can be efficiently used for the colonic delivery of PETase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.