Abstract
Bent crystal x-ray imagers are a well-established diagnostic tool to study high energy density (HED) objects by acquiring two-dimensional x-ray radiographs. Often, studying these HED objects requires very high spatial resolution, which is limited by astigmatism when using spherically bent crystals. By using toroidal-shaped crystals instead, astigmatism can be reduced and the overall spatial resolution of the instrument improved. Here, the development and characterization of a laser-gated x-ray radiography platform at the National Ignition Facility using a toroidal crystal is presented. This includes measurements of the spatial and temporal profile, which is determined by the x-ray source. To properly validate the reduced astigmatism, a new multi-plane grid approach was implemented, which, for the first time, allows a depth of field measurement, alignment verification and x-ray source size estimate in a single shot, demonstrating the current platform’s capability to provide sub-10 μm resolution over a 0.9 mm depth of field with a temporal resolution of 110 ps.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have