Abstract

Abstract Imputation models were developed to predict seedling regeneration density and composition on National Forest System (NFS) lands in Oregon and Washington. The models were based on Forest Inventory and Analysis and Pacific Northwest Regional NFS Monitoring data. Individual models were developed based on broad forest plant association groups (FPAGs) with all model development and analysis conducted in R using a most similar neighbor-like imputation approach. Model performance was evaluated based on bias, mean absolute deviation, root mean-squared error (RMSE), and error rate in correctly predicting the total presence or absence of any regenerating species regardless of species (Total ER). Low to moderate RMSE (≤7400 regeneration stems ha−1) and low to moderate Total ER (≤50%) were observed for 25 out of 58 FPAG-specific models. The regeneration imputation models produced in this study represent a large first step towards developing flexible, expandable, and adaptable regeneration models that can be easily incorporated into existing growth models like the Forest Vegetation Simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.