Abstract

The basic mechanical properties of a diaphragm under various temperatures in hot diaphragm preforming of composites are obtained by uniaxial tensile tests. A constitutive model considering the influence of temperature is accordingly developed to characterize its large deformation behavior. Model parameters are obtained by nonlinear fitting experiment data. The constitutive model is implemented in ABAQUS through the user material subroutine UHYPER. The developed constitutive model is verified by simulating the covering deformation of the diaphragm over a C-type mold. Finally, as an application of the developed hyperelastic model, an optimal design of a support bar in the hot diaphragm preforming process is implemented. The constitutive model lays a solid foundation for the finite element simulation and process optimization of the hot diaphragm forming (HDF) of carbon composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.