Abstract

Cracks initiate and propagate when tensile stress, caused by an increase in suction, becomes greater than tensile strength in expansive soils. It is important to understand the variation of tensile stress with suction for properly tackling the problems associated with cracks. In this paper, a new practical model is presented for predicting tensile stress from suction, and is verified using finite element analysis. The parametric study shows that drying time and diffusion coefficient control the distribution of tensile stress with depth and the depth to zero tensile stress, while elastic modulus, the difference between final surface suction and initial suction, and suction compression index control the magnitude of tensile stress. The new model can be used to predict the suction where the crack initiates using the soil water characteristic curve (SWCC), to estimate the depth of crack for a specific region, and to estimate the required drying time for a specific crack depth. The new model widens the general application of the SWCC approach in unsaturated soils and can be a useful tool to analyze the interaction between foundation or pavement subgrade and local climatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.