Abstract
Single photon ionization (SPI) based on vacuum ultraviolet (VUV) lamps has been extensively investigated and applied due to its clean mass spectra as a soft ionization method. However, the photon energy of 10.6 eV and photon flux of 1011 photons s-1 of a commercial VUV lamp limits its range of ionizable analytes as well as its sensitivity. This work designs a chemical ionization focusing integrated (CIFI) ionization source time-of-flight mass spectrometry (TOFMS) based on a VUV lamp for the detection of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). The photoelectrons obtained from the VUV lamp via the photoelectric effect ionized the oxygen and water in the air to obtain the reagent ions. The ion-molecule-reaction region (IMR) is constituted by a segmented quadrupole that radially focuses the ions using a radio-frequency electric field. This significantly enhances the yield and transport efficiency of the product ions leading to a great improvement in sensitivity. As a result, a 44-fold and 1154-fold increase in the signal response for benzene and pentanal were achieved, respectively. To verify the reliability of the ionization source, the linear correspondence and repeatability of benzene and pentanal were investigated. Satisfactory dynamic linearity was obtained in the mixing ratio range of 5-50 ppbv, and the relative standard deviation (RSD) of inter-day reached 3.91% and 6.26%, respectively. Finally, the CIFI-TOFMS was applied to the determination of OVOCs, and the LOD of 12 types of OVOCs reached the pptv level, indicating that the ionization source has the potential for accurate and sensitive online monitoring of atmospheric OVOCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.