Abstract

A novel pulse-diagnosis system was proposed in this study for measuring pulse wave velocities. In contrast with most conventional mechanical, rigid-type pulse diagnosis instruments such as pressure transducers and microactuators, a conductive elastic polymer was adopted as the sensor material. The soft and formability properties of such material enabled fabricating a flexible pulse diagnosis instrument. In addition, the flexible design was integrated with a contemporary, wrist-type pulse-wave acquisition system to ensure stable measurements. Closely related to the incidence of cardiovascular diseases, pulse wave velocity was analyzed in applications to verify the feasibility of this system. Regarding signal processing, the cun, guan, and chi pulse signals obtained through the data acquisition device were sent to the LabVIEW platform for reconstructing the pulse waveforms. Finally, the results of 20 measured samples were compared and analyzed to evaluate the level of system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.