Abstract

Brain capillaries have structural and functional characteristics that constitute a regulatory interface, or “barrier,” between the blood and the brain. We have investigated the role of the neural tissue environment in the differentiation of the endothelial barrier, by transplanting embryonic brain fragments to the coelomic cavity, where they were vascularized by nonneural vessels, and fragments of embryonic mesoderm to the brain, where they were vascularized by neural vessels. A major problem in this approach is that when embryonic tissues are transplanted to an ectopic site, their own blood vessels survive and form a part of the new vascular system. This has made the results of previous experiments difficult to interpret. We overcame this problem by transplanting fragments of tissue that had not yet been vascularized from very young quail embryos to host chick embryos. These grafts did not contain vascular channels that could form part of a new vascular system. Furthermore, the distinctive quail nuclear morphology allowed us to demonstrate that the grafted tissue was, in fact, vascularized by the host vessels. Abdominal vessels vascularizing grafted neural tissue formed structural, functional, and histochemical features of the blood-brain barrier. In contrast, brain vessels vascularizing grafted mesodermal tissue were devoid of barrier characteristics. These results indicate that endothelial blood-brain barrier characteristics develop in response to some aspect of the neural environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.