Abstract

Aim. Development of mathematical models of circulation (considering anomaly in hemorheology) allowing to diagnose functional condition of vessels/cardiovascular system.
 Methods. Echocardiography, mathematical modeling, sedimentation and rheology laws, human mechanics and physiology methods were used for developing mathematical models.
 Results. The following mathematical models were obtained: for determination of colloid dispersive blood system viscosity, considering concentration of dispersive phase (blood cells) and blood structure formation; velocity of inconvenient blood cells sedimentation depending on flow velocity of sediment and cell concentration; parameters of blood elasticity and viscosity as a connection between the velocity change and blood viscosity, Young`s elasticity and change tension; blood filtration in vessels (modified form of Darcy`s law) considering tension and changes of destroyed and undestroyed colloid blood system structure velocity. It was shown that impairments of blood flow velocity leads to blood cells sedimentation and thrombus structure formation, which is not moving according to Newton’s law. New indicators for diagnosing functional condition of vessels and estimating the severity of vascular insufficiency are introduced.
 Conclusion. Developed hemorheologic models allow to adequately estimate human cardiovascular bloodflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.