Abstract

ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.