Abstract

Highly integrated and interconnected carbon nanofiber hybrid nanofibers decorated with samarium(III) oxide (Sm2O3 NPs) nanoparticles was synthesized by ultrasound assisted method and characterized using X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), energy dispersive x-rays (EDX), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The electrocatalytic activity (ECA) was monitored by detection of toxic 4-nitrophenol under phosphate buffer (pH 7.0). The sonochemical route employed was efficient to prepare Sm2O3 NPs modified electrode and this class of catalysts might be active electrocatalyst for the detection of 4-nitrophenol in drinking water. The screen-printed carbon electrode (SPCE) modified with Sm2O3 NPs@f-CNFs was fabricated in a facile way for the sensitively electrochemical determination of 4-nitrophenol. Under optimized preparation conditions, the electrochemical testing (differential pulse voltammetry) of 4-nitrophenol exhibited a reduction peak at -0.64 V. Compared with bare SPCE, Sm2O3 NPs, f-CNFs, Sm2O3 NPs@f-CNFs modified SPCE showed highest current response. The reduction peaks current vs the concentration of 4-nitrophenol exhibits a linear relation with the concentration range from 0.02 to 387.2 μM and the limit of detection was determined to be M (S/N = 3). In addition, Sm2O3 NPs@f-CNFs was contributed to detecting 4-nitrophenol in drinking water and river water samples with the recover ranging from 95.6% to 98.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.