Abstract

At the close of the millennium, a revolution in the treatment of disease is taking shape due to the emergence of new therapies based on human recombinant proteins. The ever-growing demand for such pharmaceutical proteins is an important driving force for the development of safe and large-scale production platforms. Since the efficacy of a human protein is generally dependent on both its amino acid composition as well as various post-translational modifications, many recombinant human proteins can only be obtained in a biologically active conformation when produced in mammalian cells. Hence, mammalian cell culture systems are often used for expression. However, this approach is generally known for limited production capacity and high costs. In contrast, the production of (human) recombinant proteins in milk of transgenic farm animals, particularly cattle, presents a safe alternative without the constraint of limited protein output. Moreover, compared to cell culture, production in milk is very cost-effective. Although transgenic farm animal technology was still in its infancy a decade ago, today it is on the verge of fulfilling its potential of providing therapeutic proteins that can not be produced otherwise in sufficient quantities or at affordable cost. Since 1989, we have been at the forefront of this development, as illustrated by the birth of Herman, the first transgenic bull. In this communication, we will present an overview of approaches we have taken over the years to generate transgenic founder animals and production herds. Our initial strategies were based on microinjection; at the time the only viable option to generate transgenic cattle. Recently, we have adopted a more powerful approach founded on the application of nuclear transfer. As we will illustrate, this strategy presents a breakthrough in the overall efficiency of generating transgenic animals, product consistency, and time of product development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.