Abstract
ABSTRACTThis study develops and investigates a fully passive air-breathing tubular direct methanol fuel cell (t-DMFC) with a steel-tube anode and a steel-mesh cathode. The effects of methanol concentration, cathode catalyst loading, mesh structure, and forced air convection are experimentally explored. Results indicate that the t-DMFC performs better at a relatively higher methanol concentration of 8 M. It is recommended to use a catalyst loading of 4 mg cm−2. Both the electrochemical impedance spectroscopy (EIS) and performance tests confirm that the 40-mesh setup is preferred at the cathode. The fuel cell yields a poor performance when the cathode works with forced air convection because the air-blowing operation reduces the cell temperature and this effect dominates the cell performance. The dynamic and constant-load behaviors are also inspected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.