Abstract

A recent study showed the potential of the DA Perten 7200 NIR Spectrometer in detecting chlorpyrifos-methyl pesticide residue in rough, brown, and milled rice. However, this instrument is still lab-based and generally suited for point-of-sale testing. To provide a field-deployable version of this technique, an existing light emitting diode (LED)-based instrument that provides discrete NIR wavelength illumination and reflectance spectra over the range of 850-1550 nm was tested. Spectra were collected from rough, brown, and milled rice at different pesticide concentrations and analyzed for quantitative and qualitative measurement using partial least squares regression (PLS) and discriminant analysis (DA). Simulations for two LED-based instruments were also evaluated using corresponding segments of spectra from the DA7200 to represent LED illumination. For the simulation of the existing LED-based instrument (LEDPrototype1) fitted with 850, 910, 940, 970, 1070, 1200, 1300, 1450, and 1550 nm LED wavelengths, resulting R2 ranged from 0.52 to 0.71, and the correct classification was 70.4% to 100%. The simulation of a second LED instrument (LEDPrototype2) fitted with 980, 1050, 1200, 1300, 1450, 1550, 1600, and 1650 nm LED wavelengths showed R2 of 0.59 to 0.82 and correct classifications of 66% to 100%. These LED wavelengths were selected based on the significant wavelength regions from the PLS regression coefficients of DA7200 and the commercial availability of LED wavelengths. Results showed that it is possible to use a multi-spectral LED-based instrument to detect varying levels of chlorpyrifos-methyl pesticide residue in rough, brown, and milled rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.