Abstract

To overcome the zigzag pathway transport of the electron diffusion process and eliminate the surface trap states of phenyl-C61-butyric acid methyl ester (PCBM) nanofilms in inverted perovskite solar cells, novel 1D N-type doped carbon nanorods (CNRs) are developed by a stibonium (Sb) auxiliary ball milling method and introduced into the PCBM film to prepare the PCBM:Sb-CNRs hybrid transport layer. In this way, the N-type doped Sb-CNRs can extend the built-in electric field between CH3 NH3 PbI3 and PCBM to facilitate the separation of electron/hole pairs. The discontinuous band with the built-in potential in the PCBM/Sb-CNRs heterojunction can boost interfacial charge redistribution and promote electrons diffusion from PCBM to electrode through 1D Sb-CNRs network. As a result, the high device efficiency of 19.26% with enhanced air stability and little hysteresis are achieved. This work demonstrates a simple strategy to improve the efficiency and stability of perovskite photovoltaic devices using low-cost carbon nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.