Abstract
BackgroundCardiac hypertrophy, a leading cause of heart failure, threatens global public health. Deubiquitinating enzymes (DUBs) are critical in cardiac pathophysiology by regulating protein stability, function, and degradation. Here, we investigated the role and regulating mechanism of ovarian tumor domain-containing 7B (OTUD7B) in cardiac hypertrophy by modulating fatty acid metabolism.MethodsMice subjected to transverse aortic constriction (TAC) and cardiomyocytes treated with phenylephrine (PE) were used to explore the role of OTUD7B in myocardial hypertrophy. The potential molecular mechanisms underlying OTUD7B's regulation of cardiac hypertrophy were explored through transcriptome analysis and further validated in cardiomyocytes.ResultsReduced OTUD7B expression was observed in hypertrophic hearts following TAC surgery. Cardiac-specific OTUD7B deficiency exacerbated, while OTUD7B overexpression mitigated, pressure overload-induced hypertrophy and cardiac dysfunction both in vivo and in vitro. OTUD7B knockdown resulted in ferroptosis, as evidenced by decreased mitochondrial cristae, increased Fe2+ ion content, lipid peroxide accumulation, while OTUD7B overexpression inhibited ferroptosis. Mechanistically, transcriptomic analysis identified OTUD7B plays a role in the regulation of fatty acid metabolism and pathological cardiac hypertrophy. OTUD7B was found to directly bind to HNF4α, a transcription factor regulating fatty acid oxidation-related genes. Further, OTUD7B exerted deubiquitination activity to stabilize the HNF4α protein by removing K48-linked ubiquitin chains, thereby preventing its degradation via the proteasomal pathway and linking the HNF4α degradation and ferroptosis. Finally, ferroptosis inhibitors, ferrostatin-1, alleviated OTUD7B inhibition-induced ferroptosis, fatty acid metabolism suppression, and myocardial hypertrophy.ConclusionsWe confirmed that OTUD7B is involved in the regulation of ferroptosis in pressure overload-induced cardiac hypertrophy and highlighted that OTUD7B alleviates cardiac hypertrophy by regulating ferroptosis and fatty acid oxidation through deubiquitination and stabilization of HNF4α.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have