Abstract

We isolated the fluoroacetate dehalogenase gene (H1), from Moraxella species strain B, and placed it under the transcriptional control of a 154 bp fragment of the erm gene promoter. The promoter/gene construct was attached to the Butyrivibrio fibrisolvens shuttle vector pBHerm, and the resulting dehalogenase expression plasmid (pBHf) was transferred to B. fibrisolvens OB156 by electroporation. The erm gene promoter directed expression of dehalogenase activity in both E. coli and B. fibrisolvens OB156. Cell-free lysates of the genetically modified OB156 defluorinated 10.6 nmol fluoroacetate/min/mg protein. Growing cultures of OB156 were able to detoxify fluoroacetate in the culture medium, at the rate of 9.9 nmol/min/mg. Plasmid pBHf was retained by 100% of OB156 cells after 500 generations of non-selective culture. The restriction pattern of pBHf remained unchanged after extensive non-selective growth and host bacteria continued to produce active dehalogenase. The construction of rumen bacteria that are able to detoxify an important natural poison supports the feasibility of using genetically modified rumen bacteria to aid animal production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.