Abstract
Deterministic one-way Turing machines with sublinear space bounds are systematically studied. We distinguish among the notions of strong, weak, and restricted space bounds. The latter is motivated by the study of P automata. The space available on the work tape depends on the number of input symbols read so far, instead of the entire input. The class of functions space constructible by such machines is investigated, and it is shown that every function f that is space constructible by a deterministic two-way Turing machine, is space constructible by a strongly f space-bounded deterministic one-way Turing machine as well. We prove that the restricted mode coincides with the strong mode for space constructible functions. The known infinite, dense, and strict hierarchy of strong space complexity classes is derived also for the weak mode by Kolmogorov complexity arguments. Finally, closure properties under AFL operations, Boolean operations and reversal are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.