Abstract

ABSTRACTThe Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics load with identical weights when describing the development of age-specific mortality rates. Effectively this means that the main characteristics of the model simplify to a random walk model with age-specific drift components. But restricting the adjustment mechanism of the stochastic and linear trend components to be identical may be too strong a simplification. In fact, the presence of a stochastic trend component may itself result from a bias induced by properly fitting the linear trend that characterizes mortality data. We find empirical evidence that this feature of the Lee–Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find that the classical Lee–Carter model will otherwise overestimate the reduction of mortality for the younger age groups and will underestimate the reduction of mortality for the older age groups. In practice, our recommendation means that the Lee–Carter model instead of a one-factor model should be formulated as a two- (or several) factor model where one factor is deterministic and the other factors are stochastic. This feature generalizes to the range of models that extend the Lee–Carter model in various directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.