Abstract

Abstract. Radiosondes provide one of the primary sources of upper troposphere and stratosphere temperature data for numerical weather prediction, the assessment of long-term trends in atmospheric temperature, study of atmospheric processes and provide intercomparison data for other temperature sensors, e.g. satellites. When intercomparing different temperature profiles it is important to include the effect of temporal mismatch between the measurements. To help quantify this uncertainty the atmospheric temperature variation through the day needs to be assessed, so that a correction and uncertainty for time difference can be calculated. Temperature data from an intensive radiosonde campaign, at Manus Island in Papua New Guinea, were analysed to calculate the hourly rate of change in temperature at different altitudes and provide recommendations and correction factors for different launch schedules. Using these results, three additional longer term data sets were analysed (Lindenberg 1999 to 2008; Lindenberg 2009 to 2012; and Southern Great Plains 2006 to 2012) to assess the diurnal variability of temperature as a function of altitude, time of day and season of the year. This provides the appropriate estimation of temperature differences for given temporal separation and the uncertainty associated with them. A general observation was that 10 or more repeat measurements would be required to get a standard error of the mean of less than 0.1 K per hour of temporal mismatch.

Highlights

  • Radiosondes provide one of the primary sources of upper troposphere and stratosphere temperature data for numerical weather prediction, the assessment of long-term trends in atmospheric temperature, study of atmospheric processes and provide intercomparison data for other temperature sensors, e.g. satellites

  • 3.1 Manus Island Dynamics of the Madden–Julian Oscillation (DYNAMO) data set Radiosonde temperature readings are amalgamated into altitude bins 500 m high, labelled as the centre of each bin, i.e. 0 to 500 m labelled as 250 m

  • Four radiosonde data sets have been analysed to assess the temporal variability of the temperature profile as a function of altitude, time of day and season of the year

Read more

Summary

Introduction

Radiosondes provide one of the primary sources of upper troposphere and stratosphere temperature data for numerical weather prediction, the assessment of long-term trends in atmospheric temperature, study of atmospheric processes and provide intercomparison data for other temperature sensors, e.g. satellites. For many of these applications, understanding the measurement uncertainty is crucial to effectively using the data and interpreting the relationship between different measurement sources. This paper addresses the coincidence uncertainty associated with using radiosonde results for intercomparisons with other temperature measurements

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.