Abstract

The isotope composition of iron in soils can display the environmental conditions that formed this soil. But plants extract only the mobile iron from soil, which is a small fraction of the soils' total iron. Yet this fraction is notoriously difficult to extract experimentally. Here we provide evidence that this signature is provided readily in the form of strategy II plants (grasses). We determined the stable Fe isotope signature of iron pools in two agronomic soils with two different sequential extraction methods. The Fe isotopic composition of the following soil mineral pools was measured: exchangeable iron, iron of poorly-crystalline (oxyhydr)oxides, iron in organic matter, iron of crystalline oxides and silicate bound iron. We found variations of about 1 per mil in δ 56Fe (δ 56Fe/[‰] = [( 56/54Fe sample/ 56/54Fe IRMM-014) − 1]·10 3) in the iron isotopic composition between the different soil mineral pools. The pools that contribute most to plant nutrition are water-extractable- and exchangeable iron, iron in organic matter and iron of poorly-crystalline (oxyhydr)oxides. These fractions are about 0.3 per mil lighter than the bulk soils. Silicates in our soils have a δ 56Fe of up to 0.4‰, suggesting preferential loss of light Fe during weathering. We compared the isotope composition of the plant-available Fe to that of typical strategy I and strategy II plants, grown on the soils. While redox and other transformation processes in the rhizosphere enrich strategy I plants to varying degrees in light Fe isotopes, strategy II plants exhibit a uniform Fe isotopic composition and are only slightly enriched in the heavier iron isotopes by about 0.3‰. Therefore these plants may record the Fe isotope composition of plant-available iron in soils, to which the composition of strategy I plants can be compared to.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.