Abstract

Solid-state lithium metal batteries (SSLMBs) are promising candidates for high-energy-density energy storage devices. However, there still lacks an evaluation criterion to estimate real research status and compare overall performance of the developed SSLMBs. Herein, we propose a comprehensive descriptor, Li+ transport throughput ( ), to estimate actual conditions and output performance of the SSLMBs. The is defined as molar number of Li+ passing through unit area of electrode/electrolyte interface in an hour (mol m-2 h-1 ) during cycling of battery, which is a quantizable value after taking complex aspects including cycle rate, electrode areal capacity and polarization into account. On this basis, we evaluate the of liquid, quasi-solid-state and solid-state batteries, and highlight three key aspects to achieve high value of via building highly efficient cross-phase, cross-gap and cross-interface ion transport in the solid-state battery systems. We believe that the new concept of provides milestone guidelines towards large-scale commercialization of SSLMBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.