Abstract

This paper reports a study into the effect of cavitation on the octane number of gas-condensate gasoline with the addition of isopropanol in the amount of 0‒12 % by volume. The papers that confirm the impact of cavitation on the intensification of oil cracking reactions have been analyzed. Cavitation also initiates reactions of interaction between free radicals and alcohols. A laboratory installation scheme has been proposed to investigate the cavitation treatment process on the characteristics of gasoline modified with alcohols. A methodology has been devised for studying the effect of cavitation treatment intensity on the octane number of gasoline. A 0.3‒0.9-point increase in the octane number of gas-condensate gasoline modified with isopropanol was experimentally proven following its cavitation treatment. The effect of the number of cavitation treatment cycles on the octane number indicator has been studied; it is shown that the stable value of an increase in the octane number is achieved over 7‒8 cycles of cavitation treatment at a pressure at the outlet from the nozzle of 9.0 MPa. A reduction in the isopropanol additive, required to produce gasoline brands A-95 and A-98, when using a cavitation treatment technology was substantiated. It has been experimentally confirmed that compared to simple mechanical mixing of alcohol and hydrocarbon gasoline, the application of cavitation reduces the consumption of isopropanol by 17 % (from 3.0 % to 2.5 % by volume) in the production of gasoline brand A-95; and by 14 % (from 8.1 % to 7.0 % % by volume) in the production of gasoline brand A-98. The effect of isopropanol concentration on the increase in the octane number of gasoline, measured by research method, under conditions of cavitation treatment is nonlinear in nature: with highs at concentrations of 1.0 % by volume, 3.5 % by volume, and 6.5 % by volume. Varying the initial concentration of isopropanol and the octane number of a hydrocarbon gasoline fraction can optimize the technological mode of production of gasoline brands A-95 and A-98 in terms of raw materials and energy consumption

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.