Abstract

AbstractPhotoelectrochemical water splitting (PEC‐WS) is a promising route to obtain hydrogen (and oxygen) from sunlight and water. However, too many semiconductors show poor stability, due to photodegradation phenomena in aqueous solutions, thus loosing efficiency under operative conditions. Aim of this paper is to introduce a simple and fast method for screening different semiconductor materials and identify their efficiency in H2 (or O2) production with respect to photocorrosion. This method could be used with any finely dispersed semiconductor (powder) for a fast, preliminary evaluation of the material's behaviour without interferences from the supporting material (i. e. FTO) or any binder. The method is based on the combination of scanning electrochemical microscopy (SECM) in the tip generation/substrate collection (TG/SC) mode and of cavity microelectrodes as SECM tips. Here, we show results obtained on three powder materials, namely core‐shell CuI/CuO, CuI and TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.