Abstract
Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index (DI(OGTT)) that is a measure of pancreatic β-cell insulin secretory compensation for changing insulin sensitivity. We conducted an observational study of n = 187 subjects, representing the entire glucose tolerance continuum from normal glucose tolerance to type 2 diabetes. OGTT-derived insulin sensitivity (S(I OGTT)) was calculated using a novel multiple-regression model derived from insulin sensitivity measured by hyperinsulinemic euglycemic clamp as the independent variable. We also validated the novel S(I OGTT) in n = 40 subjects from an independent data set. Plasma C-peptide responses during OGTT were used to determine oral glucose-stimulated insulin secretion (GSIS(OGTT)), and DI(OGTT) was calculated as the product of S(I OGTT) and GSIS(OGTT). Our novel S(I OGTT) showed high agreement with clamp-derived insulin sensitivity (typical error = +3.6%; r = 0.69, P < 0.0001) and that insulin sensitivity was lowest in subjects with impaired glucose tolerance and type 2 diabetes. GSIS(OGTT) demonstrated a significant inverse relationship with S(I OGTT). GSIS(OGTT) was lowest in normal glucose-tolerant subjects and greatest in those with impaired glucose tolerance. DI(OGTT) was sequentially lower with advancing glucose intolerance. We hereby derive and validate a novel OGTT-derived measurement of insulin sensitivity across the entire glucose tolerance continuum and demonstrate that β-cell compensation for changing insulin sensitivity can be readily calculated from clinical variables collected during OGTT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.