Abstract

Cobalt magnetic nanoparticles surface functionalised with iminodiacetic acid were evaluated as a nano-particulate solid phase extraction absorbent for copper ions (Cu2+) from environmental water samples. Using an external magnetic field, the collector nanoparticles could be separated from the aqueous phase, and adsorbed ions simply decomplexed using dilute HNO3. Effects of pH, buffer concentration, sample and sorbent volume, extraction equilibrium time, and interfering ion concentration on extraction efficiency were investigated. Optimal conditions were then applied to the extraction of Cu2+ ions from natural water samples, prior to their quantitation using high-performance chelation ion chromatography. The limits of detection (LOD) of the combined extraction and chromatographic method were ~0.1ngml−1, based upon a 100-fold preconcentration factor (chromatographic performance; LOD=9.2ngml−1 Cu2+), analytical linear range from 20 to 5000ngmL−1, and relative standard deviations=4.9% (c=1000ngml−1, n=7). Accuracy and precision of the combined approach was verified using a certified reference standard estuarine water sample (SLEW-2) and comparison of sample determinations with sector field inductively coupled plasma mass spectrometry. Recoveries from the addition of Cu2+ to impacted estuarine and rain water samples were 103.5% and 108.5%, respectively. Coastal seawater samples, both with and without prior UV irradiation and dissolved organic matter removal were also investigated using the new methodology. The effect of DOM concentration on copper availability was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.