Abstract

The problem of the nonlinear dielectric relaxation of complex liquids is tackled in the context of the Cole-Davidson [J. Chem. Phys. 19, 1484 (1951)] model. By using an appropriate time derivative of noninteger order, an infinite hierarchy of differential-recurrence relations for the moments (expectation values of the Legendre polynomials) is obtained. The solution is established for the stationary regime of an ensemble of polar and symmetric-top molecules acted on by a strong dc bias electric field superimposed on a weak ac electric field. The results for the first three nonlinear harmonic components of the electric susceptibility are analytically established and illustrated with the help of Argand diagrams for the nonlinear dielectric increment and three-dimensional dispersion and absorption spectra for the second and the third harmonic components as a function of the anomalous exponent beta</=1, the value of which gives rise to skewed arcs (Argand plots) and asymmetric shapes (loss spectra) in the high-frequency domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.