Abstract

This paper presents a simple and fast approach to find a minimum sampling frequency for multi-band signals. Instead of neighbor and boundary conditions, constraints on the sampling frequency were derived by using the geometric approach to the bandpass sampling theorem. Reformulation of the constraints on the minimum sampling frequency enabled to represent the problem as an optimization problem which was structured by the geometric programming and mixed-integer nonlinear programming methods. The convex optimization problem was then solved by the proposed algorithm applying interior point approach in the line search framework. It was demonstrated that this unified structure directly linked the geometric approach of the bandpass sampling theorem to the optimization problem. The proposed method was verified through numerical simulations in terms of the minimum sampling frequency and the computational efficiency. Results illustrated the feasibility of the geometric approach and the proposed algorithm in the determination of the minimum sampling frequency by providing the savings in the number of iterations and the decrease in the valid minimum sampling frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.