Abstract

Molecular tunnels in enzyme systems possess variable architecture and are therefore difficult to predict. In this work, we design and apply an algorithm to resolve the pathway followed by ammonia using the bifunctional enzyme formylglycinamide ribonucleotide amidotransferase (FGAR-AT) as a model system. Though its crystal structure has been determined, an ammonia pathway connecting the glutaminase domain to the 30 Å distal FGAR/ATP binding site remains elusive. Crystallography suggested two purported paths: an N-terminal-adjacent path (path 1) and an auxiliary ADP-adjacent path (path 2). The algorithm presented here, RismPath, which enables fast and accurate determination of solvent distribution inside a protein channel, predicted path 2 as the preferred mode of ammonia transfer. Supporting experimental studies validate the identity of the path, and results lead to the conclusion that the residues in the middle of the channel do not partake in catalytic coupling and serve only as channel walls facilitating ammonia transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.