Abstract

Fluorescence quenching was used to determine the distribution coefficient K d for a tuberculostatic rifabutin in a liposome-water system at pH 6.4 and 7.4. Liposomes were large unilamellar vesicles composed of phosphatidylcholine or its mixtures with cholesterol or cardiolipin and containing a fluorescent label (anthryl phosphatidylcholine with the fluorophore in the hydrophobic region). The K d values calculated in the Stern-Volmer model are comparable for phosphatidylcholine and phosphatidylcholine/cholesterol at both pH, and testify to rifabutin hydrophobicity (logK d ≈ 2.4–2.6). Inclusion of negatively charged cardiolipin increases the K d by more than an order of magnitude at pH 6.4, and ionization of the second phosphate at pH 7.4 produces an additional increase. These results demonstrate the large contribution of electrostatic forces into the interaction of rifabutin with model membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.