Abstract
A new method for measuring internal pore water pressure (PWP) is introduced to determine the critical state line (CSL) in partially frozen sand, investigating the influence of temperature and strain rate on the critical state parameters. A series of consolidated undrained and drained triaxial tests, along with internal PWP measurements, were conducted on both dense and loose specimens under different temperatures and strain rates. Similarly to unfrozen sand, a unique CSL was established for the partially frozen sand at −3 °C in both stress (q-p′) and void ratio (e-p′) space. The results show that the critical state friction angle (φcs′) is not affected by temperature (warmer than −5 °C) and strain rate, while the critical state cohesion (ccs′) varies with temperature, strain rate and failure mode. The ccs′ increases with decreasing temperature from 23 °C to −3 °C and to −10 °C, but decreases to zero when the strain rate was reduced from 1%/min to 0.1%/min. In e-p′ space, the slope of CSL could be associated with the dilation of partially frozen sand, which increases with decreasing temperature and increasing strain rate, potentially due to the increased contact area between the pore ice and sand grains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have