Abstract
Over recent decades, the low-field Nuclear Magnetic Resonance (NMR) method has been consistently used in the petroleum industry for the petrophysical characterisation of conventional reservoirs. Through this non-invasive technique, the porosity, pore size distribution and fluid properties can be determined from the signal emitted by fluids present in the porous media. Transverse relaxation (T2) data, in particular, are one of the most valuable sources of information in an NMR measurement, as the resulting signal decay can be inverted to obtain the T2 distribution of the rock, which can in turn be correlated with porosity and pore size distribution. The complex pore network of shales, which can have a large portion of pore sizes in the nanopore and mesopore range, restricts the techniques that can be used to investigate their pore structure and porosity. The ability of the NMR technique to detect signals from a wide range of pores has therefore prompted the quest for more standardised interpretation methods suitable for shales. Using low-field NMR, T2 experiments were performed on shale samples from the Carynginia formation, Perth Basin, at different saturation levels. The shale samples were initially saturated with brine and the T2 spectrum for each sample was obtained. Then, they were placed in a vacuum oven and their weight monitored until a constant value was reached. T2 curves were subsequently obtained for each of the oven-dried samples and a cut-off value for clay-bound water was calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.