Abstract
Due to the increased consumption of chemotherapeutic agents, their high toxicity, carcinogenicity, their occurrence in the aquatic environment must be properly evaluated. An analytical method based on online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry was developed and validated. A 1mL injection volume was used to quantify six of the most widely used cytotoxic drugs (cyclophosphamide, gemcitabine, ifosfamide, methotrexate, irinotecan and epirubicin) in municipal wastewater. The method was validated using standard additions. The validation results in wastewater influent had coefficients of determination (R2) between 0.983 and 0.998 and intra-day precision ranging from 7 to 13% (expressed as relative standard deviation %RSD), and from 9 to 23% for inter-day precision. Limits of detection ranged from 4 to 20ngL−1 while recovery values were greater than 70% except for gemcitabine, which is the most hydrophilic compound in the selected group and had a recovery of 47%. Matrix effects were interpreted by signal suppression and ranged from 55 to 118% with cyclophosphamide having the highest value. Two of the target anticancer drugs (cyclophosphamide and methotrexate) were detected and quantified in wastewater (effluent and influent) and ranged from 13 to 60ngL−1. The proposed method thus allows proper monitoring of potential environmental releases of chemotherapy agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.