Abstract

The second-order derivative of a scalar function with respect to a variable vector is known as the Hessian matrix. We present a computational scheme based on the principles of differential geometry for determining the Hessian matrix of a skew ray as it travels through a prism system. A comparison of the proposed method and the conventional finite difference (FD) method is made at last. It is shown that the proposed method has a greater inherent accuracy than FD methods based on ray-tracing data. The proposed method not only provides a convenient means of investigating the wavefront shape within complex prism systems, but it also provides a potential basis for determining the higher order derivatives of a ray by further taking higher order differentiations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.