Abstract

This paper proposes an angular and emissivity-dependent split-window equation that permits the determination of the sea surface temperature (SST) to a reasonable level of accuracy for any observation angle, including large viewing angles at the image edges of satellite sensors with wide swaths. This is the case of the MODIS radiometer both on EOS Terra/Aqua platforms, with observation angles of up to 65° at the surface, for which the split-window equation has been developed in this study. The algorithm takes into account the angular dependence of both the atmospheric correction (due to the increase of the atmospheric optical path with angle) and the emissivity correction (since sea surface emissivity (SSE) decreases with observation angle). Angular-dependent coefficients have been estimated for the atmospheric terms, and also an explicit dependence on the SSE has been included in the algorithm, as this parameter has values different to a blackbody surface for off-nadir angles, the SSEs also being dependent on surface wind speed. The proposed algorithm requires as input data at-sensor brightness temperatures for the split-window bands (31 and 32 of MODIS), the observation angle at each pixel, an estimate of the water vapor content (which is provided by the MODIS MOD07/MYD07 products) and accurate SSE values for both channels. The preliminary results show a good agreement between SSTs estimated by the proposed equation for off-nadir viewings of MODIS-Terra images and in situ SST measurements, with a root-mean square error (RMSE) of about ± 0.3 K, for which the MODIS SST product gives an RMSE larger than ± 0.7 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.