Abstract

The position of the right ventricle (RV), often partly behind the sternum, implies difficulties to image the RV free wall using transthoracic echocardiography (TTE) and consequently limits the possibilities of stroke volume calculations. The aim of this study was to evaluate whether the volume of the right ventricle (RV) can be determined by combining TTE distance measurements that do not need the RV free wall to be fully visualized. The RV volume was approximated by an ellipsoid composed of three distances. Distance measurements, modeled RV stroke volumes (RVSV), and RV ejection fraction (RVEF) were compared to reference values obtained from cardiac magnetic resonance (CMR) imaging for 12 healthy volunteers. Inter-modality comparisons showed that distance measurements were significantly underestimated in TTE compared to CMR. The modeled RV volumes using TTE distance measurements were underestimated compared to reference CMR volumes. There was, however, for TTE an agreement between modeled RVSV and left ventricular stroke volumes determined by biplane Simpson's rule. Similar agreement was shown between modeled RVSV based on CMR distance measurements and the CMR reference. Regarding RVEF, further studies including patients with a wider range of RVEF are needed to evaluate the method. In conclusion, the ellipsoid model of the RV provides good estimates of RVSVs, but volumes based on distance measurements from different modalities cannot be used interchangeably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.