Abstract
Repair welding is a popular method to repair the leakage zone in tube-to-tubesheet joint of shell-tube heat exchangers. But the repaired residual stresses are generated inevitably and have a great effect on stress corrosion cracking (SCC). In this paper, the effects of repair welding on residual stress were studied by finite element method (FEM) and neutron diffraction measurement. The original weld residual stresses calculated by FEM showed good agreement with neutron diffraction measurement results. After repair welding, the transverse residual stresses change very little while the longitudinal residual stresses are increased in the repair zone. In the nonrepair zone, both the transverse and longitudinal stresses are decreased. The repair welding times have little effect on residual stress distribution. With the increase of welding length and heat input, the residual stresses increase. Repair opposite to the original welding direction is recommended because the opposite welding direction minimizes the residual stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.