Abstract

Methods to calculate the refractive properties of solutions at different wavelengths are described by using experimental data at just two wavelengths. The properties are the refractive index and its gradients with temperature and concentration. Cauchy's equation is used to determine the refractive indices. The gradients versus temperature and concentration are then determined by using the Murphy-Alpert and the Lorentz-Lorenz equation, respectively. Finally, the particular case of a triglycine sulfate aqueous solution is considered as an example. The approach should provide the desired information for fringe analysis when dual-wavelength holographic or other interferometry is used for solving heat and mass transfer problems in fluids during crystal-growth experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.