Abstract

Magnetic tunnel junctions have not been easily accessible for research because of not only their complicated fabrication processes but also side effects induced during the fabrication. The method utilizing arrays composed of in-line four-point probes with various spacings is promising as an alternative to the fabrication method. We found in the current-in-plane tunneling measurement that the determination of the probe spacing is the most important to evaluate the characteristics of magnetic tunnel junctions. Our simulation indicates that if one would choose at least more than three sets of an array with probe spacings centered at the spacing at which the maximum current-in-plane tunneling magnetoresistance is observed, the statistics should become improved resulting in the accurate evaluation of the properties of tunnel junctions. We also found that the suitable probe spacings with a change in the resistance of electrodes are not as sensitive as those with a change in the RA of the tunnel junction. Our results alert that the failure of selecting suitable probe spacings observes no tunneling signals because tunneling is very sensitive to the resistances of the tunnel junction and electrodes, which makes the current-in-plane tunneling method useless.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.