Abstract

We present a sensitive, selective and robust method for the determination of 14 thiol compounds in aqueous samples. Thiols were derivatized with ω-bromoacetonylquinolinium bromide (BQB) and its deuterium labeled equivalent D7-ω-bromoacetonylquinolinium bromide (D7). Derivatized thiols were preconcentrated by online solid-phase extraction (SPE) followed by liquid chromatography separation and electrospray ionization tandem mass spectrometry determination (SPE/LC-ESI-MS/MS). The robustness of the method was validated for wide ranges in pH, salinity, and concentrations of sulfide and dissolved organic carbon (DOC) to cover contrasting natural water types. The limits of detection (LODs) for the thiols were 3.1–66 pM. Between 6 and 14 of the thiols were detected in different natural sample types at variable concentrations: boreal wetland porewater (0.7–51 nM), estuarine sediment porewater (50 pM–11 nM), coastal sea water (60 pM–16 nM), and sulfate reducing bacterium cultures (80 pM–4 nM). MS/MS fragmentation of the compounds produces two pairs of common product ions, m/z 130.2/137.1 and 218.1/225.1, which enables scanning for unknown thiols in precursor ion scan mode. Using this approach, we identified cysteine, mercaptoacetic acid, N-acetyl-L-cysteine and sulfurothioic S-acid in boreal wetland porewater. The performance of the developed method sets a new state of the art for the determination of thiol compounds in environmental and biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.