Abstract
Although it has long been known that soluble arsenic-sulfur (As-S) compounds exist in sulfidic waters and may play significant roles in several important processes in the biogeochemical arsenic cycle, no suitable analytical methods exist for their determination. We provide evidence that the four homologue (oxy)thioarsenates, mono-, di-, tri-, and tetrathioarsenate (AsO3S3-, AsO2S23-, AsOS33- and AsS43-), can be formed in geochemical model reactions between arsenite and sulfide under anoxic conditions (through currently unknown reaction mechanisms) and that these compounds appear to be major As species in natural sulfidic waters. These As-S species are quantified by anion-exchange chromatography-inductively coupled plasma mass spectrometry (AEC-ICPMS) with instrumental detection limits of approximately 0.1 nmol of As L(-1) in undiluted samples; arsenite, arsenate, and monomethylarsenate are quantified as well, but dimethylarsenate cannot be analyzed by this technique. Sulfur in the eluting peaks can be measured as SO+ with detection limits of approximately 0.1 micromol of S L(-1). The (oxy)thioarsenates were synthesized in solution and characterized by electrospray-tandem mass spectrometry (ES-MS-MS). In geochemical model solutions, we confirmed that both the AEC-ICPMS retention times and the ES-MS-MS spectra of the reaction products of sulfide and arsenite matched the synthesized (oxy)thioarsenate standards; for natural waters, the mass spectrometric confirmation was unsuccessful, due to matrix interferences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.