Abstract

Absolute molecular weight distributions were determined for different medium-chain-length poly(3-hydroxyalkanoates) (MCL PHAs) with predominantly 3-hydroxyoctanoate (PHO), 3-hydroxynonanoate (PHN) or 3-hydroxydodecanoate content. This is the first study to estimate the Mark-Houwink constants of these polymers in the commonly employed GPC carrier solvent tetrahydrofuran (THF). The absolute molecular weight averages were determined via triple-detector size exclusion chromatography and combined with analyses using various detectors. Unlike with the short-chain-length poly(3-hydroxybutyrate), PHB, uncorrected polystyrene calibration in THF provided a good estimate (within 10 %) of absolute MW values for these MCL PHAs, irrespective of side chain length. Weight-average MW values ranged from 172,000 Da for PHO to 18,200 for PHN with 30 mol% 3-hydroxyheptanoate, and dispersities of all samples were close to two. Melt viscosity data suggested an entanglement molecular weight around 8 × 104 Da, significantly higher than most polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.