Abstract

Room temperature ionic liquids are an exciting class of solvents that have the potential to accelerate and control a vast range of reactions. The Diels–Alder reaction, paradigm in organic synthesis, highlights the advantages provided by ionic liquids as the reaction between cyclopentadiene and methyl acrylate in 1-ethyl-3-methylimidazolium tetrachloroaluminate and heptachlorodialuminate [EMIM][AlCl 4] and [EMIM][Al 2Cl 7], respectively, has been reported to react with rates over 200 times faster and endo selectivity 10 times greater than commonly used reaction conditions. Density functional theory (DFT) calculations at the B3LYP/6-311+G(2d,p) theory level have been employed to determine the origin of the reported rate accelerations. The DFT simulations find that specific hydrogen bonding between the ionic liquid cations and the dienophile at the transition state is primarily responsible, however, the rate of reaction was found to be moderated by the solvent's hydrogen bond accepting ability (anion effect). Different anion-to-cation ratios were tested and a 1:1 ratio was determined to give the best agreement with experimental observations. The computed DFT activation barriers were within reasonable agreement of the reported rates, however it is clear that a full microenvironment featuring hundreds of ions is necessary for proper computational treatment of the solvent effects delivered by the ionic liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.