Abstract

A methodology was developed for the separation and determination of microamounts of mercury from copper concentrate samples by wavelength dispersive X-ray fluorescence (WDXRF) after solid-phase extraction of mercury from iodide medium using polyurethane foam (PUF). The best sorption conditions for the Hg–KI–PUF system were settled using X-ray fluorescence technique after collection of ground PUF on a filter paper by vacuum filtration and direct measurement of the intensity signal of the sorbed mercury on PUF. The main parameters of sorption such as iodide concentration, pH, shaking time and sample dilution effect were studied. The system shows rapid kinetic sorption and maximum X-ray intensity signal was achieved after shaking for 2 min a 0.01 mol l−1 iodide solution containing microamounts of mercury in the pH range from 1.0 to 9.0. Effective sorption up to a volume of 0.9 l allows preconcentration of mercury. A linear fit up to 50 μg mercury was obtained by the plot of the initial mercury mass in the bulk solution (0.5 l) vs. its respective XRF intensity signal measurement on ground PUF after the sorption process. The calibration sensitivity, quantification and detection limits found were 9.09 CPS μg−1, 9.0 and 2.7 μg, respectively. The sorption of many elements was also evaluated under the best conditions. High concentrations of Cu(II) and Fe(III) interfere seriously. Mercury-selective separation could be achieved using citrate or EDTA as masking agent; no interference due to copper matrix samples was observed in citrate medium. This methodology was evaluated by recovery for mercury determination in copper concentrate ore samples supplied by a mining industry and copper sulfate salts; the results were between 98% and 106%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.