Abstract

ABSTRACTNew experimental technique for a determination of the stress intensity factor and the non‐singular T‐stress is developed, verified and implemented. The approach is based on combining the crack compliance method and optical interferometric measurements of local deformation response on small crack length increment. Initial experimental information has a form of in‐plane displacement component values, which are measured by electronic speckle‐pattern interferometry at some specific points located near a crack tip. The first four coefficients of Williams' series are derived. A determination of initial experimental data at the nearest vicinity of crack/notch tip is the main feature of the developed approach. In this case, it is not necessary to use complex numerical models, which are connected with geometrical parameters and loading conditions of the object under study in a stage of experimental data interpretation. Moreover, an availability of high‐quality interference fringe patterns, which are free from rigid body motions, serves as a reliable indicator of real stress state in the vicinity of the crack tip. Experimental verification of the proposed method is performed for specially designed specimen of double cantilever beam type. Distributions of the stress intensity factor and the T‐stress for two cracks in different residual stress fields in the vicinity of friction stir welding joints are presented as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.