Abstract

Nitrogen-doped graphene quantum dots (NGQDs) are shown to strongly enhance the integrated chemiluminescence (CL) of the permanganate-sulfite system. The mechanism of enhancement was investigated, and the catalytic effect of the NGQDs was proven. In contrast to other carbon-based nanomaterials, the enhancement by NGQDs is independent of particle size and surface. However, the pyridinic nitrogen on the surface of the NGQDs facilitates the transformation of dissolved oxygen into H2O2 and the generation of hydroxyl radicals. This induces the increase of CL intensity. However, in the presence of Fe3+, the nitrogen functions and phenol groups on the surface of the NGQDs will chelate it, and the CL signal is decreased as a result. This effect was used to design an assay for Fe3+ that has a wide response range (1 × 10-8 - 1 × 10-6M) and a 4nM detection limit. The method was successfully applied to the determination of Fe3+ in spiked real water samples. Graphical abstract Nitrogen-doped graphene quantum dots (NGQDs) are demonstrated to strongly enhance the integrated chemiluminescence (CL) of the permanganate-sulfite system. The pyridinic N-atoms in NGQDs facilitate the transformation from dissolved oxygen into H2O2 and the generation of •OH radicals. This leads to the highly enhanced CL of the system. In the presence of Fe3+, which will be chelated by the nitrogen functions and phenol groups on the surface of the NGQDs, the CL signal is decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.